Addition of Oxygen to a $\mathrm{Pt}_{3} \mathrm{Re}$ Cluster Complex: A Model for Dissociative Chemisorption of Oxygen

Jianliang Xiao, Jagadese J. Vittal, and Richard J. Puddephatt*

Department of Chemistry, University of Western Ontario London, Canada N6A 5B7

Ljubica Manojlovit-Muir and Kenneth W. Muir*

Department of Chemistry, University of Glasgow Glasgow, Scotland G12 8QQ

Received May 17, 1993
This article reports the first example of the oxidative addition of dioxygen to a transition-metal cluster to give a $\operatorname{bis}\left(\mu_{3}\right.$-oxo) cluster. Remarkably, this reaction leads to 4-electron oxidation of the cluster and an increase in the cluster electron count of 8 -electrons, and it provides a simple model for the dissociative chemisorption of oxygen at a metal surface. This work adds significantly to the known value of organometallic oxo clusters as structural models for inorganic oxides and surface-bound oxide and to recent research on the dissociative addition of oxygen to multiply bonded dirhenium complexes. ${ }^{1,2}$

The coordinatively unsaturated cluster cation $\left[\mathrm{Pt}_{3}\left(\mu_{3}-\mathrm{CO}\right)(\mu-\right.$ $\left.\mathrm{dppm})_{3}\right]^{2+}(1), \mathrm{dppm}=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$, has been shown to be a good model for chemisorption of several small molecules at a Pt (111) surface, ${ }^{3}$ but it fails to react with O_{2}. Since bimetallic $\mathrm{Pt}-\mathrm{Re}$ catalysts may be more useful than platinum alone, it was of interest to prepare coordinatively unsaturated platinumrhenium clusters as models for reactivity at the $\mathrm{Pt} / \mathrm{Re}$ surface. Reaction of 1 with $\left[\operatorname{Re}(\mathrm{CO})_{s}\right]^{-}$gave the new cluster cation $\left[\mathrm{Pt}_{3}-\right.$ $\left\{\operatorname{Re}(\mathrm{CO})_{3}\right\}(\mu \text {-dppm) }]^{+}{ }^{+}(2) .^{4}$ The cluster 2 was obtained as redblack crystals with either $\mathrm{PF}_{6}{ }^{-}$or $\mathrm{BPh}_{4}{ }^{-}$anions, and the structure of 2 as the $\left[\mathrm{BPh}_{4}\right]$ salt is shown in Figure $1 .{ }^{4}$ The cluster core has tetrahedral geometry, and the metal-metal bonds are short and presumably strong (Table I).

The cluster cation 2 has a valence electron count of only 54 and so is coordinatively unsaturated. ${ }^{5}$ The simplest interpretation of the bonding in 2 is that the three filled $\mathrm{M}-\mathrm{M}$ bonding orbitals ($\mathrm{a}_{1}+\mathrm{e}$ symmetry) of a $\mathrm{Pt}_{3}(\mu-\mathrm{dppm})_{3}$ fragment act as donors to the three vacant acceptor orbitals (also $a_{1}+e$ symmetry) of a

[^0]

Figure 1. View of the structure of the cluster cation 2. Only the ipso carbon atoms of the dppm phenyl groups are shown. The ranges of Pt-P and Re-C distances are 2.279(3)-2.293(3) and $1.85(1)-1.88(1) \AA$, respectively.

Table I. Comparison of Metal-Metal Distances (\AA) in 2 and 3^{a}

	$\mathbf{2}$	$\mathbf{3}$
$\operatorname{Pt}(1)-\operatorname{Pt}(2)$	$2.611(1)$	$2.826(1)$
$\mathrm{Pt}(1)-\mathrm{Pt}(3)$	$2.593(1)$	$3.094(1)$
$\mathrm{Pt}(2)-\mathrm{Pt}(3)$	$2.608(1)$	$3.081(1)$
$\mathrm{Pt}(1)-\operatorname{Re}$	$2.684(1)$	$2.843(1)$
$\mathrm{Pt}(2)-\operatorname{Re}$	$2.649(1)$	$2.854(1)$
$\mathrm{Pt}(3)-\operatorname{Re}$	$2.685(1)$	$3.228(1)$

${ }^{a}$ The accepted range for $\mathrm{Pt}-\mathrm{Pt}$ bonded distances is $2.6-2.8 \AA$, and values for 1 are $2.613(1)-2.650(1) \AA$. Previous values for $d(\mathrm{Pt}-\mathrm{Re})$ fall in the range 2.71-2.91 \AA, with almost half in the range $2.83-2.87 \AA$. The Pt-Re distances in 2 appear to be the shortest known. ${ }^{9}$
$\operatorname{Re}(\mathrm{CO})_{3}{ }^{+}$fragment. ${ }^{6.7}$ In this way, each Pt atom shares 16 and the Re atom shares 18 valence electrons. However, several small molecules such as CO and $\mathrm{HC} \equiv \mathrm{CH}$ add rapidiy to 2 at the rhenium center to give $\left[\mathrm{Pt}_{3}\left\{\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~L}\right\}(\mu-\mathrm{dppm})_{3}\right]^{+}$, indicating that rhenium is the major site of unsaturation.

Of particular interest is the reaction of O_{2} with solutions of 2 to give the orange dioxocluster $\left[\mathrm{Pt}_{3}\left\{\operatorname{Re}(\mathrm{CO})_{3}\right\}\left(\mu_{3}-\mathrm{O}\right)_{2}(\mu-\mathrm{dppm})_{3}\right]^{+}$ (3). ${ }^{8}$ This reaction takes several days to reach completion for solutions standing under 1 atm of air at room temperature, and no intermediates can be detected by NMR; the reaction is faster under pure O_{2}, while 2 is stable under a N_{2} atmosphere. Remarkably, the same product 3 is formed by reaction of O_{2} with 2 in the solid state. The structure of the cation $\mathbf{3}$ was established by an X-ray structural analysis of the $\mathrm{PF}_{6}{ }^{-}$salt and is illustrated in Figure $2 .{ }^{8}$

The inner core of $\mathbf{3}$ contains a slightly distorted tetrahedron of metal atoms in which two $\mathrm{Pt}_{2} \mathrm{Re}$ faces are now capped by μ_{3}-oxo bridging atoms in a nearly symmetric fashion. The incorporation of two $\mu_{3}-\mathrm{O}$ capping units is accompanied by a

[^1]

Figure 2. View of the cluster cation 3, showing 50% probability ellipsoids. Only the ipso carbon atoms of the dppm phenyl groups are shown. The ranges of $\mathrm{Pt}-\mathrm{P}$ and Re-C distances are 2.227(3)-2.243(3) and 1.89 (1) -1.89 (1) \AA, respectively. Metal-oxygen distances are $\mathrm{Pt}(1)-\mathrm{O}(\mathrm{Br} 2)$ 2.049(6), $\mathrm{Pt}(2)-\mathrm{O}(\mathrm{Br})$ 2.065(6), $\mathrm{Pt}(3)-\mathrm{O}(\mathrm{Br} 1) 2.036(6), \mathrm{Pt}(3)-\mathrm{O}(\mathrm{Br} 2)$ 2.046(6), $\mathrm{Re}-\mathrm{O}(\mathrm{Br} 1) 2.117(6)$, and $\mathrm{Re}-\mathrm{O}(\mathrm{Br} 2) 2.121(6) \AA$.
significant lengthening of all the metal-metal distances compared to those in 2 (Table I). The distances within the $\mathrm{Pt}(1) \mathrm{Pt}(2) \operatorname{Re}$ triangle are still clearly in the bonding region, but the $\mathrm{Pt}(1) \cdots \mathrm{Pt}-$ (3), $\mathrm{Pt}(2) \cdots \mathrm{Pt}(3)$, and $\mathrm{Pt}(3) \cdots \operatorname{Re}$ distances are borderline or nonbonding. ${ }^{9}$ In contrast, a μ_{3}-oxo ligand causes shortening of metal-metal bonds in some other clusters, where the electron count does not change. ${ }^{2}$ Since a μ_{3}-O ligand donates 4 electrons, the electron count in 3 is 62, compared to only 54 in 2 , and so cleavage of $\mathrm{M}-\mathrm{M}$ bonds is expected. ${ }^{5}$ The bonding in $\mathbf{3}$ may be described in terms of two 16 -electron $\mathrm{Pt}(\mathrm{I})$ atoms, $\mathrm{Pt}(1)$ and $\mathrm{Pt}(2)$, having similar distorted square-planar PtOP_{2} centers with a $\mathrm{Pt}(1)-\mathrm{Pt}(2)$ bond, a square-planar 16 -electron Pt (II) atom, $\mathrm{Pt}(3)$, with a cis $-\mathrm{PtO}_{2} \mathrm{P}_{2}$ center, and an octahedral $f a c-\mathrm{Re}(\mathrm{I})$ $(\mathrm{O})_{2}(\mathrm{CO})_{3}$ center which completes an 18 -electron configuration by accepting two electrons from the $\mathrm{Pt}(1)-\mathrm{Pt}(2)$ bond. The valence bond representations of $\mathbf{2}$ and $\mathbf{3}$ are then clearly related (Scheme I) and may be used to rationalize the remarkable increase in electron count without any ligand dissociation. A similar

[^2]Scheme I (Top) Formation of 3; (bottom), Simplified VB Representations

bonding scheme has been proposed for the dioxo-capped cluster $\left\{\mathrm{Pt}_{4} \mathrm{Cl}_{2}\left(\mu_{3}-\mathrm{O}\right)_{2}(\mathrm{dmso})_{6}\right]$ (dmso $=$ dimethyl sulfoxide). ${ }^{10}$

Cluster 3 was also formed when 2 was treated with the oxygen atom donor $\mathrm{Me}_{3} \mathrm{NO}$ in the absence of O_{2}. Interestingly, an intermediate cluster 4 was detected by NMR in this reaction and is tentatively suggested to be the mono-oxo adduct. ${ }^{11}$ No such intermediate was detected in the reaction of 2 with O_{2}, and, together with the observation that the reaction also occurs with 2 in the solid state, this strongly suggests that the formation of 3 from 2 and O_{2} occurs by a concerted mechanism. It is likely that O_{2} first adds to the rhenium center, and then $\mathrm{O}-\mathrm{O}$ bond cleavage occurs as the oxygen atoms migrate to the $\mathrm{Pt}_{2} \mathrm{Re}$ faces. There is a remarkable resemblance to chemisorption, which leads to $\mathrm{M}_{3}\left(\mu_{3}-\mathrm{O}\right)$ units on either platinum or rhenium surfaces and, at least for platinum, is thought to occur via an intermediate O_{2} complex. ${ }^{1 g, h}$ Of course, the ability of metal surfaces to bind oxygen is important in catalytic oxidation reactions, and so it is also significant that 2 is a catalyst for the oxidation of $\mathrm{Ph}_{3} \mathrm{Pto}_{3} \mathrm{Ph}=0$ by O_{2} (turnover number at room temperature $=1 \mathrm{~mol}(\mathrm{~mol} 2)^{-1}$ h^{-1}). Clearly the type of $\mathrm{Pt}_{2} \operatorname{Re}\left(\mu_{3}-\mathrm{O}\right)$ units established in this work could also be present in oxide supported bimetallic Pt-Re catalysts.

Acknowledgment. We thank the NSERC (Canada) and SERC (U.K.) for financial support and Dr. N. C. Payne for access to X-ray equipment.

Supplementary Material Available: Tables of X-ray structural data for 2 and 3 (34 pages); observed and calculated structure factors for 2 and 3 (85 pages). Ordering information is given on any current masthead page.

[^0]: (1) (a) Ingham, S. L.; Lewis, J.; Raithby, P. R. J. Chem. Soc., Chem. Commun. 1993, 166. (b) Schauer, C. K.; Voss, E. J.; Sabat, M.; Shriver, D. F. J. Am. Chem. Soc. 1989, 111, 7662. (c) Chi, Y.; Hwang, L. S.; Lee, G. H.; Peng, S. M. J. Chem. Soc., Chem. Commun. 1988, 1456. (d) Chisholm, M. H.; Folting, K.; Huffman, J. C.; Kober, E. M. Inorg. Chem. 1985, 24, 241. (e) Cotton, F. A.; Lahuerta, P.; Sanau, M.; Schwotzer, W. J. Am. Chem. Soc. 1985, 107, 8284. (f) Bottomley, F.; Sutin, L. Adv. Organomet. Chem. 1988, 28, 339. (g) Gland, J. L.; Sexton, B. A.; Fisher, G. B. Surf. Sci. 1980, 95 , 587. (h) Zaera, F.; Somorjai, G. Surf. Sci. 1985, 154, 303. (i) Goudsmit, R. J.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Whitmire, K. H. J. Chem. Soc., Chem. Commun. 1983, 246. (j) Bartley, S. L.; Dunbar, K. R.; Shih, K.-Y.; Fanwick, P. E.; Walton, R. A. J. Chem. Soc., Chem. Commun. 1993, 98.
 (2) (a) Ceriotti, A.; Resconi, L.; Demartin, F.; Longoni, G.; Manassero, M.; Sansoni, M. J. Organomet. Chem. 1983, 249, C35. (b) Lavigne, G.; Lugan, N.; Bonnet, J. J. Nouv. J. Chim. 1981, 5, 423.
 (3) Puddephatt, R. J.; Manojlovit-Muir, Lj.; Muir, K. W. Polyhedron 1990, 9, 2767.
 (4) Spectroscopic and X-ray data for 2 are as follow. IR (Nujol): $\nu(\mathrm{CO})$ $1979 \mathrm{~s}, 1873 \mathrm{~s}, 1867 \mathrm{~s} .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.9\left[\mathrm{~s},{ }^{1} J(\mathrm{PtP})=2411,{ }^{2} J(\mathrm{PtP})\right.$ $\left.=248,{ }^{3} J(\mathrm{PP})=198 \mathrm{~Hz}\right] .\left[\mathrm{Pt}_{3} \mathrm{Re}(\mathrm{CO})_{3}(\mu \text {-dppm })_{3}\right]\left[\mathrm{BPh}_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ triclinic, PI; $a=21.278(3), b=19.021(5)$, and $c=11.352(2) \AA, \alpha=90.10(2)^{\circ}, \beta$ $=99.83(1)^{\circ}, \gamma=94.31(2)^{\circ}, V=4514(2) \AA^{3}, Z=2$; Enraf-Nonius CAD4 diffractometer with Mo K α radiation, $T=-50^{\circ} \mathrm{C}, \lambda=0.71073 \AA ; R=0.037$, $R_{w}=0.030$ for 392 parameters and 8885 reflections with $I \geq 2.5 \sigma(I)$. Anal. Calcd for $\mathrm{C}_{103} \mathrm{H}_{88} \mathrm{BCl}_{2} \mathrm{O}_{3} \mathrm{P}_{6} \mathrm{Pt}_{3} \mathrm{Re}: \mathrm{C}, 51.3 ; \mathrm{H}, 3.7$. Found: $\mathrm{C}, 51.3 ; \mathrm{H}, 3.6$.
 (5) Mingos, D. M. P.; May, A. S. In The Chemistry of Metal Cluster Complexes; Shriver, D. F., Kaesz, H. D., Adams, R. D., Eds.; VCH: New York, 1990. The most common electron count for tetrahedral clusters is 60 , such as in $\left[\mathrm{Ir}_{4}(\mathrm{CO})_{12}\right]$.

[^1]: (6) EHMO calculations on the model cluster $\left[\mathrm{Pt}_{3}\left\{\mathrm{Re}(\mathrm{CO})_{3}\right\}\left(\mu-\mathrm{H}_{2} \mathrm{PCH}_{2^{-}}\right.\right.$ $\left.\left.\mathrm{PH}_{2}\right)_{3}\right]^{+}$provide support for the filled cluster MOs having $\mathrm{a}_{1}+\mathrm{e}$ symmetry, there being only three skeletal electron pairs.
 (7) For previous theoretical work on $\mathrm{Pt}_{3} \mathrm{~L}_{6}$ clusters and on $\mathrm{M}(\mathrm{CO})_{3}$ fragments, see (a) Evans, D. G. J. Organomet. Chem. 1988, 352, 397. (b) Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. Orbital Interactions in Chemistry; Wiley: New York, 1985; Chapter 20.
 (8) Data for 3 are as follow. IR (Nujol): $\nu(\mathrm{CO}) 1974 \mathrm{~s}, 1862 \mathrm{~s}, 1852 \mathrm{~s} .{ }^{31} \mathrm{P}$ $\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 3.6\left[\mathrm{~m},{ }^{1} J(\mathrm{PtP})=2770 \mathrm{~Hz}\right], 3.3\left[\mathrm{~s},{ }^{1} J(\mathrm{PtP})=3462 \mathrm{~Hz}\right]$, $0.7\left[\mathrm{~m},{ }^{1} J(\mathrm{PtP})=3960 \mathrm{~Hz}\right] .\left[\mathrm{Pt}_{3} \operatorname{Re}\left(\mu_{3}-\mathrm{O}\right)_{2}(\mathrm{CO})_{3}(\mu-\mathrm{dppm})_{3}\right]\left[\mathrm{PF}_{6}\right] \cdot \mathrm{OEt}_{2}:$ monoclinic, $P_{2} / n ; a=17.1603(18), b=23.2822$ (17), and $c=19.7021$ (9) $\AA, \beta=94.160(6)^{\circ}, V=7850.8(11) \AA^{3}, Z=4$; Enraf-Nonius CAD4 diffractometer with Mo K α radiation, $\lambda=0.71069 \AA ; R=0.047, R_{w}=0.042$ for 802 parameters and 11822 reflections with $I \geq 2 \sigma(I)$. Anal. Calcd for $\mathrm{C}_{82} \mathrm{H}_{76} \mathrm{~F}_{6} \mathrm{O}_{6} \mathrm{P}_{7} \mathrm{Pt}_{3} \mathrm{Re}: \mathrm{C}, 43.6 ; \mathrm{H}, 3.4$. Found: $\mathrm{C}, 43.3 ; \mathrm{H}, 3.2$.

[^2]: (9) (a) Douglas, G.; Manojlovir-Muir, Lj.; Muir, K. W.; Rashidi, M.; Anderson, C. M.; Puddephatt, R. J. J. Am. Chem. Soc. 1987, 109, 6527 and references therein. (b) Ciani, G.; Moret, M.; Sironi, A.; Antognazza, P.; Beringhelli, T.; D'Alfonso, G.; Pergola, R. D.; Minoja, A. J. Chem. Soc., Chem. Commun. 1991, 1255. The Cambridge Structure Database yielded references to 15 structures containing Pt-Re bonds.
 (10) Betz, P.; Bino, A. J. Am. Chem. Soc. 1988, 110, 602.
 (11) Data for 4 are as follow. IR (Nujol): $\nu(\mathrm{CO}) 1978 \mathrm{~s}, 1864 \mathrm{~s}$, br. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 11.7\left[\mathrm{~m},{ }^{1} J(\mathrm{PtP})=2709 \mathrm{~Hz}\right], 11.4\left[\mathrm{~m},{ }^{1} J(\mathrm{PtP})=2430\right.$ $\mathrm{Hz}], 1.5\left[\mathrm{~m},{ }^{1} J(\mathrm{PtP})=4178 \mathrm{~Hz}\right]$.

