Addition of Oxygen to a Pt₃Re Cluster Complex: A Model for Dissociative Chemisorption of Oxygen

Jianliang Xiao, Jagadese J. Vittal, and Richard J. Puddephatt^{*}

Department of Chemistry, University of Western Ontario London, Canada N6A 5B7

Ljubica Manojlović-Muir and Kenneth W. Muir*

Department of Chemistry, University of Glasgow Glasgow, Scotland G12 800

Received May 17, 1993

This article reports the first example of the oxidative addition of dioxygen to a transition-metal cluster to give a $bis(\mu_3 \cdot oxo)$ cluster. Remarkably, this reaction leads to 4-electron oxidation of the cluster and an increase in the cluster electron count of 8-electrons, and it provides a simple model for the dissociative chemisorption of oxygen at a metal surface. This work adds significantly to the known value of organometallic oxo clusters as structural models for inorganic oxides and surface-bound oxide and to recent research on the dissociative addition of oxygen to multiply bonded dirhenium complexes.^{1,2}

The coordinatively unsaturated cluster cation $[Pt_3(\mu_3-CO)(\mu dppm)_3]^{2+}$ (1), dppm = Ph₂PCH₂PPh₂, has been shown to be a good model for chemisorption of several small molecules at a Pt(111) surface,³ but it fails to react with O₂. Since bimetallic Pt-Re catalysts may be more useful than platinum alone, it was of interest to prepare coordinatively unsaturated platinum-rhenium clusters as models for reactivity at the Pt/Re surface. Reaction of 1 with [Re(CO)₅]⁻ gave the new cluster cation [Pt₃{Re(CO)₃}(μ -dppm)₃]⁺ (2).⁴ The cluster 2 was obtained as red-black crystals with either PF₆⁻ or BPh₄⁻ anions, and the structure of 2 as the [BPh₄] salt is shown in Figure 1.⁴ The cluster core has tetrahedral geometry, and the metal-metal bonds are short and presumably strong (Table I).

The cluster cation 2 has a valence electron count of only 54 and so is coordinatively unsaturated.⁵ The simplest interpretation of the bonding in 2 is that the three filled M-M bonding orbitals $(a_1 + e \text{ symmetry})$ of a Pt₃(μ -dppm)₃ fragment act as donors to the three vacant acceptor orbitals (also $a_1 + e$ symmetry) of a

(1) (a) Ingham, S. L.; Lewis, J.; Raithby, P. R. J. Chem. Soc., Chem. Commun. 1993, 166. (b) Schauer, C. K.; Voss, E. J.; Sabat, M.; Shriver, D. F. J. Am. Chem. Soc. 1989, 111, 7662. (c) Chi, Y.; Hwang, L. S.; Lee, G. H.; Peng, S. M. J. Chem. Soc., Chem. Commun. 1988, 1456. (d) Chisholm, M. H.; Folting, K.; Huffman, J. C.; Kober, E. M. Inorg. Chem. 1985, 24, 241. (e) Cotton, F. A.; Lahuerta, P.; Sanau, M.; Schwotzer, W. J. Am. Chem. Soc. 1985, 107, 8284. (f) Bottomley, F.; Sutin, L. Adv. Organomet. Chem. 1988, 28, 339. (g) Gland, J. L.; Sexton, B. A.; Fisher, G. B. Surf. Sci. 1980, 95, 587. (h) Zaera, F.; Somorjai, G. Surf. Sci. 1985, 154, 303. (i) Goudsmit, R. J.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Whitmire, K. H. J. Chem. Soc., Chem. Commun. 1983, 246. (j) Bartley, S. L.; Dunbar, K. R.; Shih, K.-Y.; Fanwick, P. E.; Walton, R. A. J. Chem. Soc., Chem. Commun. 1993, 98.

(2) (a) Ceriotti, A.; Resconi, L.; Demartin, F.; Longoni, G.; Manassero, M.; Sansoni, M. J. Organomet. Chem. 1983, 249, C35. (b) Lavigne, G.; Lugan, N.; Bonnet, J. J. Nouv. J. Chim. 1981, 5, 423.

(3) Puddephatt, R. J.; Manojlović-Muir, Lj.; Muir, K. W. Polyhedron 1990, 9, 2767.

(4) Spectroscopic and X-ray data for 2 are as follow. IR (Nujol): ν (CO) 1979s, 1873s, 1867s. ³¹P NMR (CD₂Cl₂): δ 7.9 [s, 1/(PtP) = 2411, ²/(PtP) = 248, ³/(PP) = 198 Hz]. [Pt₃Re(CO)₃(μ -dppm)₃][BPh₄]-CH₂Cl₂: triclinic, Pī, a = 21.278(3), b = 19.021(5), and c = 11.352(2) Å, a = 90.10(2)°, \beta = 99.83(1)°, γ = 94.31(2)°, ν = 4514(2) Å³, Z = 2; Enraf-Nonius CAD4 diffractometer with Mo Ka radiation, T = -50°C, λ = 0.710 73 Å; R = 0.037, $R_{\rm w} = 0.030$ for 392 parameters and 8885 reflections with I ≥ 2.5 σ (I). Anal. Calcd for C₁₀₃H₈₈BCl₂O₃P₆Pt₃Re: C, 51.3; H, 3.7. Found: C, 51.3; H, 3.6. (5) Mingos, D. M. P.; May, A. S. In *The Chemistry of Metal Cluster*

(5) Mingos, D. M. P.; May, A. S. In *The Chemistry of Metal Cluster Complexes*; Shriver, D. F., Kaesz, H. D., Adams, R. D., Eds.; VCH: New York, 1990. The most common electron count for tetrahedral clusters is 60, such as in [Ir₄(CO)₁₂].

Figure 1. View of the structure of the cluster cation 2. Only the ipso carbon atoms of the dppm phenyl groups are shown. The ranges of Pt-P and Re-C distances are 2.279(3)-2.293(3) and 1.85(1)-1.88(1) Å, respectively.

Table I. Comparison of Metal-Metal Distances (Å) in 2 and 3^a

	2	3
Pt(1)-Pt(2)	2.611(1)	2.826(1)
Pt(1)-Pt(3)	2.593(1)	3.094(1)
Pt(2)-Pt(3)	2.608(1)	3.081(1)
Pt(1)-Re	2.684(1)	2.843(1)
Pt(2)-Re	2.649(1)	2.854(1)
Pt(3) - Re	2.685(1)	3.228(1)

^a The accepted range for Pt-Pt bonded distances is 2.6-2.8 Å, and values for 1 are 2.613(1)-2.650(1) Å. Previous values for d(Pt-Re) fall in the range 2.71-2.91 Å, with almost half in the range 2.83-2.87 Å. The Pt-Re distances in 2 appear to be the shortest known.⁹

Re(CO)₃⁺ fragment.^{6.7} In this way, each Pt atom shares 16 and the Re atom shares 18 valence electrons. However, several small molecules such as CO and HC=CH add rapidiy to 2 at the rhenium center to give $[Pt_3{Re(CO)_3L}(\mu-dppm)_3]^+$, indicating that rhenium is the major site of unsaturation.

Of particular interest is the reaction of O_2 with solutions of 2 to give the orange dioxo cluster $[Pt_3\{Re(CO)_3\}(\mu_3-O)_2(\mu-dppm)_3]^+$ (3).⁸ This reaction takes several days to reach completion for solutions standing under 1 atm of air at room temperature, and no intermediates can be detected by NMR; the reaction is faster under pure O_2 , while 2 is stable under a N_2 atmosphere. Remarkably, the same product 3 is formed by reaction of O_2 with 2 in the solid state. The structure of the cation 3 was established by an X-ray structural analysis of the PF_6^- salt and is illustrated in Figure 2.⁸

The inner core of 3 contains a slightly distorted tetrahedron of metal atoms in which two Pt₂Re faces are now capped by μ_3 -oxo bridging atoms in a nearly symmetric fashion. The incorporation of two μ_3 -O capping units is accompanied by a

(6) EHMO calculations on the model cluster $[Pt_3[Re(CO)_3](\mu-H_2PCH_2-PH_2)_3]^+$ provide support for the filled cluster MOs having $a_1 + e$ symmetry, there being only three skeletal electron pairs.

(7) For previous theoretical work on Pl_3L_6 clusters and on $M(CO)_3$ fragments, see (a) Evans, D. G. J. Organomet. Chem. 1988, 352, 397. (b) Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. Orbital Interactions in Chemistry; Wiley: New York, 1985; Chapter 20.

(8) Data for 3 are as follow. IR (Nujol): ν (CO) 1974s, 1862s, 1852s. ³¹P NMR (CD₂Cl₂): δ 3.6 [m, ¹J(PtP) = 2770 Hz], 3.3 [s, ¹J(PtP) = 3462 Hz], 0.7 [m, ¹J(PtP) = 3960 Hz]. [Pt₃Re(μ_3 -O)₂(CO)₃(μ -dppm)₃][PF₆]·OEt₂: monoclinic, P_{2_1}/n ; a = 17.1603(18), b = 23.2822(17), and c = 19.7021(9)Å, $\beta = 94.160(6)^\circ$, V = 7850.8(11) Å³, Z = 4; Enraf-Nonius CAD4 diffractometer with Mo K α radiation, $\lambda = 0.710$ 69 Å; R = 0.047, $R_w = 0.042$ for 802 parameters and 11822 reflections with $I \ge 2\sigma(I)$. Anal. Calcd for C₈₂H₇₆F₆O₆P₇Pt₃Re: C, 43.6; H, 3.4. Found: C, 43.3; H, 3.2.

© 1993 American Chemical Society

Figure 2. View of the cluster cation 3, showing 50% probability ellipsoids. Only the ipso carbon atoms of the dppm phenyl groups are shown. The ranges of Pt-P and Re-C distances are 2.227(3)-2.243(3) and 1.89-(1)-1.89(1) Å, respectively. Metal-oxygen distances are Pt(1)-O(Br2) 2.049(6), Pt(2)-O(Br1) 2.065(6), Pt(3)-O(Br1) 2.036(6), Pt(3)-O(Br2) 2.046(6), Re-O(Br1) 2.117(6), and Re-O(Br2) 2.121(6) Å.

significant lengthening of all the metal-metal distances compared to those in 2 (Table I). The distances within the Pt(1)Pt(2)Retriangle are still clearly in the bonding region, but the Pt(1)...Pt-(3), Pt(2)...Pt(3), and Pt(3)...Re distances are borderline or nonbonding.⁹ In contrast, a μ_3 -oxo ligand causes shortening of metal-metal bonds in some other clusters, where the electron count does not change.² Since a μ_3 -O ligand donates 4 electrons, the electron count in 3 is 62, compared to only 54 in 2, and so cleavage of M-M bonds is expected.⁵ The bonding in 3 may be described in terms of two 16-electron Pt(I) atoms, Pt(1) and Pt(2), having similar distorted square-planar PtOP₂ centers with a Pt(1)-Pt(2) bond, a square-planar 16-electron Pt(II) atom, Pt(3), with a *cis*-PtO₂P₂ center, and an octahedral *fac*-Re(I)- $(O)_2(CO)_3$ center which completes an 18-electron configuration by accepting two electrons from the Pt(1)-Pt(2) bond. The valence bond representations of 2 and 3 are then clearly related (Scheme I) and may be used to rationalize the remarkable increase in electron count without any ligand dissociation. A similar

(11) Data for 4 are as follow. IR (Nujol): ν (CO) 1978s, 1864s,br. ³¹P NMR (CD₂Cl₂): δ 11.7 [m, ¹J(PtP) = 2709 Hz], 11.4 [m, ¹J(PtP) = 2430 Hz], 1.5 [m, ¹J(PtP) = 4178 Hz]. Scheme I (Top) Formation of 3; (bottom), Simplified VB Representations

bonding scheme has been proposed for the dioxo-capped cluster $\{Pt_4Cl_2(\mu_3-O)_2(dmso)_6\}$ (dmso = dimethyl sulfoxide).¹⁰

Cluster 3 was also formed when 2 was treated with the oxygen atom donor Me₃NO in the absence of O₂. Interestingly, an intermediate cluster 4 was detected by NMR in this reaction and is tentatively suggested to be the mono-oxo adduct.¹¹ No such intermediate was detected in the reaction of 2 with O₂, and, together with the observation that the reaction also occurs with 2 in the solid state, this strongly suggests that the formation of 3 from 2 and O_2 occurs by a concerted mechanism. It is likely that O_2 first adds to the rhenium center, and then O-O bond cleavage occurs as the oxygen atoms migrate to the Pt₂Re faces. There is a remarkable resemblance to chemisorption, which leads to $M_3(\mu_3-O)$ units on either platinum or rhenium surfaces and, at least for platinum, is thought to occur via an intermediate O2 complex.^{1g,h} Of course, the ability of metal surfaces to bind oxygen is important in catalytic oxidation reactions, and so it is also significant that 2 is a catalyst for the oxidation of Ph_3P to Ph_3P -O by O_2 (turnover number at room temperature = 1 mol(mol 2)⁻¹ h⁻¹). Clearly the type of $Pt_2Re(\mu_3-O)$ units established in this work could also be present in oxide supported bimetallic Pt-Re catalysts.

Acknowledgment. We thank the NSERC (Canada) and SERC (U.K.) for financial support and Dr. N. C. Payne for access to X-ray equipment.

Supplementary Material Available: Tables of X-ray structural data for 2 and 3 (34 pages); observed and calculated structure factors for 2 and 3 (85 pages). Ordering information is given on any current masthead page.

^{(9) (}a) Douglas, G.; Manojlović-Muir, Lj.; Muir, K. W.; Rashidi, M.; Anderson, C. M.; Puddephatt, R. J. J. Am. Chem. Soc. 1987, 109, 6527 and references therein. (b) Ciani, G.; Moret, M.; Sironi, A.; Antognazza, P.; Beringhelli, T.; D'Alfonso, G.; Pergola, R. D.; Minoja, A. J. Chem. Soc., Chem. Commun. 1991, 1255. The Cambridge Structure Database yielded references to 15 structures containing Pt-Re bonds.

⁽¹⁰⁾ Betz, P.; Bino, A. J. Am. Chem. Soc. 1988, 110, 602.